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Abstract 

The purpose of this article is to estimate and compare shifts in (technical) efficiency across OECD 
countries, caused by the global financial crises and heterogeneity. Technical efficiency of OECD 
countries is estimated by applying the panel model with arbitrary temporal heterogeneity in time and 
factor structures (a model with unobservable individual effects) that fits the stochastic frontier analysis. 
Because of missing values in observations, the bootstrapping-based algorithm allowing for trends in 
data across observations within a cross-sectional unit is applied for imputations. The parameters are 
estimated in a semi-parametric way. The proposed estimation derives sufficient results regardless of 
any assumption on the temporal pattern of country individual effects and contributes to the 
development of a tool for better understanding of unobserved factors that drive fluctuations in OECD 
countries. 
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1. Introduction 

The importance of taking measures of efficiency and productivity, as well as 
their further benchmarking to improve the performance of any economic system, 
is recognised. These measures are success indicators and performance metrics 
(Fred et al., 2008, p.7-15). In general, to estimate efficiency one can compare 
observed performance (values) to some optimal values, or to some maximum 
potential output obtained from the available input. Optimum values can be 
defined in terms of the production possibilities of countries. Although “true” 
potential is unknown, it is possible to observe best practice, its evolution over 
time and its variation among countries. Thus, it refers to an operation on a best-
practice “frontier” that leads to the identification of countries with the best 
performance, and further benchmarking performance of the rest against those of 
the best. Efficiency in this case is derived as the evaluation of observed outputs 
as compared to maximum potential outputs obtainable from the given inputs. 
This defines efficiency as technical efficiency. 

Technical efficiency, or its opposite term – inefficiency, is a heterogeneous 
phenomenon and varies both over time and across countries. According to Kose 
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et al. (2008), heterogeneity across countries matters, despite the common 
evolution of business cycles. Macro factors largely drive heterogeneities since 
they define initial conditions for business and ways in which economies absorb 
shocks. Nowadays, economies are increasingly interconnected and integrated in 
all areas of economic activity. The literature has already highlighted the role of 
heterogeneity and interdependency in economic development (e.g., Chaserant 
and Harnay, 2013; Tamborini, 2014). The significant role of interdependency was 
also demonstrated during the recent global financial crisis (e.g. Dallago, 2013; 
Vollmer and Bebenroth, 2012). It is possible to assume that an estimation of 
efficiency on a macro level is sensitive to heterogeneity. Ignoring heterogeneity 
on a macro level may cause estimates to become highly biased which may lead to 
misinterpretations.  This, therefore, is the motivation behind a study of technical 
efficiency on a macro level with respect to heterogeneity in various dimensions. 

Classical approaches to heterogeneity are based on panel models, which try 
to account for heterogeneity, including unobserved heterogeneity, by using 
dummy variables or structural assumptions on an error term (Baltagi, 2005; 
among others). Nevertheless, this approach has limitations, because unobserved 
heterogeneity is assumed to be constant over specified time. Extending classical 
models with a factor structure is one of the effective ways to deal with 
unobserved time-varying heterogeneity. This approach can provide a 
parsimonious specification which identifies the effects of unobserved 
heterogeneity on the outcomes of interest, allowing for access to time-varying 
technical efficiency.  

This paper focuses mainly on shifts in technical efficiency of OECD 
countries that are caused by the global financial crises, heterogeneity and 
interdependencies. The motivation for this is   instigated by the great variety in 
the initial economic conditions and development of OECD countries on the one 
hand, and their high integratability, on the other hand. In this study OECD 
countries are analyzed as production units. Their outputs are real GDP and 
export of goods and services. Whilst inputs are limited to labor (the number of 
employed), capital (gross fixed capital formation) and import of goods and 
services. Thus, a dataset is formed for 34 OECD countries1, including the 
abovementioned 2 outputs, 3 inputs, and covering the 2000Q1-2014Q4 period.  

This paper contributes to previous literature by computing and comparing 
technical efficiency in terms of productivity growth for each OECD country 
taking into consideration an arbitrary temporal heterogeneity through time to 
minimize bias and improve inference. For this purpose, the estimation of 
parameters and residuals of the panel model that has temporal heterogeneity 

                                              

1 Countries: Australia, Austria, Belgium, Canada, Chile, Czech Republic, Denmark, Estonia, 
Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Israel, Italy, Japan, Korea, 
Luxembourg, Mexico, Netherlands, New Zealand, Norway, Poland, Portugal, Slovak Republic, 
Slovenia, Spain, Sweden, Switzerland, Turkey, United Kingdom, United States; source: OECD. 
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through a time and factor structure (a model with unobservable individual 
effects) is based on a novel semi-parametric approach developed by Bai (2009) 
and Kneip et al. (2012). Another issue that is addressed in this paper is the one of 
missing values, which is the endemic problem for researchers working with 
economic indicators for a set of countries. Since the dataset should be balanced 
for heterogeneity estimation, a bootstrapping-based algorithm in the spirit of 
King et al. 2001, Honaker and King 2010 - allowing for trends in time series 
across observations within cross-sectional units - is applied for multiple 
imputations. This keeps all OECD countries within the analysis. 

The results received help to shed light on current issues that have gained 
growing attention from researchers and practices in terms of comparative studies 
of different economies, and they contribute to the attempt to develop tools for 
better understanding of unobserved factors that drive fluctuation in economic 
development across countries, including OECD countries. 

The plan of the paper is as follows. In second chapter a theoretical 
framework of the research is described. Attention is paid to a radial stochastic 
frontier, a Cobb-Douglas production function, and an arbitrary temporal 
heterogeneity in time panel model. The third chapter introduces empirical results 
and discussion. The fourth chapter contains a summary and concluding remarks. 

2. Theoretical framework and model set-up 

In the last decade, a number of research projects have been developed to 
estimate and benchmark performance measures on a macro level by applying 
various approaches, e.g., Cherchye et al. (2004), Despotis (2005), Ravallion (2005), 
Yörük and Zaim (2005), etc.  Within  the framework of the current study, 
methods which are well-established in the field of production theory are used. 
There are two fundamental ways to deal with efficiency estimation: the frontier 
approach that was introduced by Farrell (1957) and the non-frontier approach, 
initially developed by Solow (1957) and Griliches and Jorgenson (1966). As the 
main idea of this study is to compare the productivity growth across OECD 
nations the stochastic frontier approach, proposed by Aigner, Lovell and Schmidt 
(1977) and Meeusen and van cave Broeck (1977), and further developed by 
Schmidt and Sickles (1984), is chosen as a starting point. Furthermore, these 
models are particularly suitable when countries cannot entirely control their 
deviations from a production frontier due to external influences, e.g. crises. Thus, 
this study is based on the properties of the traditional micro-economic theory of 
production. A radial stochastic frontier and a Cobb-Douglas production function 
are used as back-bone models. Detailed reviews of these models are provided by 
Førsund et al. (1980), Kumbhakar and Lovell (2000), Kumbhakar (2006), and 
Greene (2008), among others. The application of these methods is done in the 
similar way, as in Matkovskyy (2015a, 2015b). 

Two main types of estimation techniques are discussed in the literature on 
technical efficiency analysis. The first one includes econometric techniques that 
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represent a stochastic approach. The second one is mathematical programming 
techniques that are nonparametric methods of the estimation. Econometric 
techniques allow for incorporating statistical noise, which is an advantage in 
comparison to mathematical programming, which does not naturally produce 
these estimates. Therefore, in this paper econometric techniques are used in a 
semi-parametric way, which allows for arbitrary temporal heterogeneity in time 
with a factor structure. 

2.1. Stochastic Frontier Model 

Let us denote a vector of output as Y, and an input requirement set as X. 
Thus, a production process can be formalized as  

𝐿(𝑌) = {𝑋: (𝑌, 𝑋)𝑖𝑠 𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑏𝑙𝑒}.  

The production function can be defined in terms of the efficient subset as 

an isoquant (𝑌) = {𝑋: 𝑋 ∈ 𝐿(𝑌) }. 

Broadly speaking, productivity can be defined as the ratio of output to 
input. Efficiency means a comparison between observed and optimal values of its 
output and input. Thus, the optimum is defined in terms of production 
possibilities and efficiency is technical and can be estimated as a comparison 
between the observed output and maximum potential output obtainable from the 
given input.  

According to Debreu (1951) and Farrell (1957), a production function can 

be formalized as 𝑌 ≤ 𝑓(𝑋). Since a country uses several inputs to produce 
several outputs, both the outputs and the inputs should be aggregated in some 
economically sensible way. Adams et al. (1999) proposed a persuasive m-output 
and n-input deterministic distance function for efficiency estimation, D(Y, X)≤1, 
that estimates a radial measure of technical efficiency  in the following way:  

∏ 𝑌𝑗

𝛾𝑗𝑚
𝑗

∏ 𝑋𝑘

𝛿𝑘𝑞
𝑘

≤ 1,            (1) 

where Y is an aggregated output, X is a given input,  𝛾𝑗 and 𝛿𝑘 are weights of 

outputs and inputs that describe a country’s technology, respectively.   

A stochastic frontier model can be specified as the Cobb-Douglas 
production function:  

𝑌𝑖𝑡 = 𝑓(𝑋𝑖𝑡) − 𝑢𝑖𝑡+ 𝜖𝑖𝑡,         (2) 
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where (−𝑢𝑖𝑡+𝜖𝑖𝑡) represents a composed error term, where  𝜖𝑖𝑡 is statistical 

noise, and  𝑢𝑖𝑡 is a country’s specific level of radial technological efficiency. Then, 
according to Lovell et al. (1994), Equation (1) can be rewritten as 

0 = ∑ 𝛾𝑗 ln 𝑦𝑗,𝑖𝑡
𝑚
𝑗=1 − ∑ 𝛿𝑘 ln 𝑥𝑘,𝑖𝑡

𝑞
𝑘=1 + 𝑣𝑖𝑡 + 𝜖𝑖𝑡 ,     (3) 

then 

ln 𝑦𝐽,𝑖𝑡 = ∑ 𝛾𝑗(− ln �̂�𝑗,𝑖𝑡)𝑚
𝑗=1 − ∑ 𝛿𝑘(− ln 𝑥𝑘,𝑖𝑡)𝑞

𝑘=1 − 𝑣𝑖(𝑡) + 𝜖𝑖𝑡 ,   (4) 

where 𝑦𝐽,𝑖𝑡 is the normalized output, and �̂�𝑗,𝑖𝑡 =
𝑦𝑗,𝑖𝑡

𝑦𝐽,𝑖𝑡
⁄ ,  j=1,…,m, j≠J. 

Denoting the variables from Equation (4) as 

𝑌𝑖𝑡 = ln 𝑦𝐽,𝑖𝑡 , 

𝑋𝑖𝑡 = (− ln �̂�𝑗,𝑖𝑡 , − ln 𝑥𝑘,𝑖𝑡),  

𝛽 = (𝛾𝑗
′, 𝛿𝑘

′ ), 

𝑣𝑖(𝑡) = −𝑢𝑖(𝑡) − 𝛽0(𝑡),  

where 𝛽0(𝑡) ≔
1

𝑛
∑ −𝑢𝑖(𝑡)𝑛

𝑖=1 , Equation (4) can be presented as the panel model 

with arbitrary temporal heterogeneity in time, which fits a frontier model of the 
type described in Aigner et al. (1977), Meeusen and Van den Broeck (1977), 
Schmidt and Sickles (1984) and Cornwell et al. (1990): 

𝑌𝑖𝑡 = 𝛽0(𝑡) + 𝑋𝑖𝑡
′ 𝛽 + 𝑣𝑖(𝑡) + 𝜖𝑖𝑡 ,      (5) 

where 𝑌𝑖𝑡 is the dependent variable for each country i at time t; 𝛽0(𝑡) is the 

general average function, that requires to have 𝑥𝑖𝑡𝑗 , j=1,..p, varying  over time, t;  

𝑋𝑖𝑡 includes explanatory variables, 𝑥𝑖𝑡 ∈ ℝ𝑃 ; 𝑣𝑖(𝑡) are time-varying individual 

effects (or individual differences) of country i at time 𝑡 ∈ {1, … , 𝑇}, 𝑣𝑖(𝑡) =
∑ 𝜆𝑖𝑙𝑓𝑙(𝑡)𝑑

𝑙=1 , 𝑣𝑖(𝑡) ∈ ℝ, generated by d common time-varying factors, where 

𝑓𝑙(𝑡) are unobserved common factors for all countries, 𝜆𝑖𝑙 are heterogeneous 

impacts of common factors on a country i; and 𝜖𝑖𝑡 is the idiosyncratic error term. 

Then, following Schmidt and Sickles (1984), technical efficiency, 𝑇𝐸𝑖(𝑡), of 
a country i at time t is calculated in the same way as for standard time-invariant 
fixed effects and random effects models:  

𝑇𝐸𝑖(𝑡) = exp {𝑣𝑖(𝑡) − 𝑚𝑎𝑥𝑗=1,…,𝑛(𝑣𝑗(𝑡))}.     (6) 
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2.2. Testing dimensionality 

The following tests help to determine the presence of heterogeneity and 
define the maximum number of factors, d.  

The test of sufficiency of classical additive effects (Bai, 2009) can derive the 
preliminary result, whether the factor dimension, d, in a model is superior to 2. 
Consequently, its first role is to advise whether there is a need for further 
dimensionality identification. It can be calculated by applying the Hausman test 
to the following hypotheses: 

𝐻0: 𝑣𝑖𝑡 = 𝑎𝑖 + 𝜃𝑡; 

𝐻1: 𝑣𝑖𝑡 = ∑ 𝜆𝑖𝑙𝑓𝑙(𝑡)2
𝑙=1 . 

where 𝑓𝑙(𝑡) are unobserved common factors for all countries, 𝜆𝑖𝑙 are 
heterogeneous impacts of common factors upon a country i. The application of 
the Hausman test is as follows2: 

𝐽𝐵 = 𝑛𝑇(�̂� − �̂�𝑤𝑖𝑡ℎ𝑖𝑛)∆−1(�̂� − �̂�𝑤𝑖𝑡ℎ𝑖𝑛)  𝒳𝑃
2

~
𝑎       (7) 

where �̂�𝑤𝑖𝑡ℎ𝑖𝑛 is the classical within OLS estimation, ∆ is the asymptotic variance 

of √𝑛𝑇(�̂� − �̂�𝑤𝑖𝑡ℎ𝑖𝑛), P is the vector-dimension of 𝛽, 𝒳𝑃
2 is the 𝒳2distribution 

with P degrees of freedom. Thus, the null hypothesis can be rejected in a case 

when 𝐽𝐵 > 𝒳𝑃,1−𝛼
2 , where 𝒳𝑃,1−𝛼

2  is the (1 − 𝛼)-quantile of the 𝒳2distribution 

with P degrees of freedom. 

The next test for the existence of common factors is applied to determine 
which model specification is more appropriate to fit the data. It determines the 
presence of interactive effects, or in other words, the existence of common 
factors, beyond the possible presence of classical "individual", "time", or 
"twoway" effects in the model. Kneip et al. (2012) propose to test the following 
hypothesis 

𝐻0: 𝑑 = 0; 

𝐻1: 𝑑 > 0. 

by applying the next statistic: 

                                              

2 Refer to Bai (2009) for detailed technical discussion. 
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𝐽 =
𝑛 𝑡𝑟 (Σ̂𝑤)−(𝑛−1)(𝑇−1)�̂�2

√2𝑛(𝑇−1)�̂�2
 𝑁(0,1)~

𝑎         (8) 

where Σ̂𝑤 is the covariance matrix of the within residuals, �̂�2 is defined as 

�̂�2 =
1

𝑛𝑇−(𝑛+𝑇)�̂�−𝑃+1
∑ ∑ (𝑦𝑖𝑡 − 𝑥𝑖𝑡

𝑇𝑇
𝑡=1

𝑛
𝑖=1 �̂� − ∑ �̂�𝑖𝑙𝑓𝑙𝑡

�̂�
𝑙=1 )2    (9) 

where �̂� is the maximum number of dimensions. This test returns the J-statistic 
with a significance level of α=0.01. If J > z1-a , where z1-a  is the (1-a) – quantile of 
the standard normal distribution the null hypothesis H0 can be rejected. 

To identify a maximum number of unobserved factors in a model, the 
following tests are applied: 

 KSS.C dimensionality criterion (Kneip et al. 2012) that tests if KSS.C(0) ≤ 
z1-a , z1-a  is the (1-a) – quantile of the standard normal distribution, H0 : 
d=0, 1, …, m until H0 cannot be rejected3 (Appendix 1); 

 IC(l) (IC1, IC2, IC3) and PC (PC1, PC2, PC3, BIC3) criteria which vary in 
penalty terms, developed by Bai and Ng (2002) (Appendix 2); 

 ABC.IC1 and ABC.IC2 developed by Alessi et al. (2010). These are Bai and 
Ng (2002) criteria improved by introducing a tuning multiplicative constant 
in the penalty, that was proposed by Hallin and Liška (2007); 

 Eigenvalue Ratio (ER) and Growth Ratio (GR) proposed by Ahn and 
Horenstein (2013) (Appendix 3); 

 IPC1, IPC2 and IPC3 panel criteria suggested by Bai (2004) (Appendix 4); 
and 

 The Threshold Approach developed by Onatski (2010) (Appendix 5). 

2.3. Parameter estimation 

To incorporate heterogeneity in time into a model, residuals should be 
allowed to have a variation in time. One of the conceivable approaches to gauge 
unobserved time-varying heterogeneity is to augment panel models with a factor 
structure that provides a parsimonious specification to detect unobserved 
heterogeneity effects. 

Factor models in the context of time-variability have been extensively 
studied by, e.g., Stock and Watson (2002), Forni et al. (2000), Bai and Ng (2002), 

                                              

3 This criterion has a tendency to ignore weakly auto-correlated factors; therefore, its values can 
be underestimated (Bada and Liebl, 2014). 
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Ahn, Lee and Schmidt (2005), Bai (2009), etc. In this paper, the algorithm 
proposed by Kneip et al. (2012) is used to derive estimates of the panel model 
with temporal heterogeneity in time and unobserved individual effects, specified 
by Equation 5. This algorithm derives a small number of common functions by 
means of principal component analysis and natural splines with no explicit 
restrictions on a temporal pattern of country effects. Factor loadings and factors 
are treated as parameters of a model. Since differences can eliminate some share 
of information, provided by data, the goal is to keep this information and use it 
for an analysis. Another advantage of this method is that it allows factors to be 
non-stationary. 

In general, parameter estimation of Equation 5 includes the next two steps: 

(i) a semi-parametric calculation of 𝛽𝑗 and 𝑣𝑖(𝑡), and (ii) estimation of 

unobserved factors by means of the functional principal component analysis4. 

In the first step, 𝛽𝑗 and 𝑣𝑖(𝑡) are calculated by minimizing 

∑
1

𝑇

𝑛
𝑖=1 ∑ (𝑌𝑖𝑡 − ∑ 𝛽𝑗𝑋𝑖𝑡𝑗 − 𝑣𝑖(𝑡)𝑃

𝑗=1 )
2𝑇

𝑡=1 + ∑ 𝑘𝑛
𝑖=1

1

𝑇
∫ (

𝑇

1
𝑣𝑖

(𝑚)(𝑠))2𝑑𝑠.  (10) 

where 𝑣𝑖
(𝑚) is the m-th derivative of 𝑣𝑖. Minimization is performed over all 

possible values of 𝛽 and m-time continuously differentiable functions  𝑣1, … , 𝑣𝑛 
on [1; T]. 

Equation (10) can be rewritten in a matrix notation: 

∑ (‖𝑌𝑖 − 𝑋𝑖𝛽 − 𝑍𝜉𝑖‖2 + 𝜅𝜉𝑖
′𝐴𝜉𝑖)𝑛

𝑖=1 ,      (11) 

where  �̅�𝑖𝑡 =
1

𝑛
∑ 𝑌𝑖𝑡

𝑛
𝑖=1 , 𝑌𝑖 = (𝑌𝑖1, … , 𝑌𝑖𝑇)′, 𝑋𝑖𝑗 = (𝑋𝑖1𝑗 , … , 𝑋𝑖𝑇𝑗)′, �̅�𝑖𝑡 =

1

𝑛
∑ 𝑋𝑖𝑡𝑗

𝑛
𝑖=1 , 𝑣𝑖

(𝑚) – m-th derivative of  𝑣𝑖; ‖∙‖ is the usual Euclidean norm in ℝ𝑇 , 

𝜅 is a preselected smoothing parameter; 𝜉𝑖 = (𝜉𝑖1, … , 𝜉𝑖𝑇)′, are natural spline 

bases, where 𝑣𝑖(𝑡) = ∑ 𝜉𝑗𝑖𝑧𝑗(𝑡)𝑇
𝑗=1 , 𝑧𝑗 .  

The optimal number of a smoothing parameter 𝜅 can be derived by 
applying cross-validation criterion such as: 

𝐶𝑉(𝜅) = ∑ ‖𝑌𝑖 − 𝑋𝑖�̂�−𝑖 − ∑ �̂�−𝑖,𝑙𝑓−𝑖,𝑙
𝑑
𝑙=1 ‖

2𝑛
𝑖=1 ,     (12) 

                                              

4 Refer to Kneip et al. (2012) and Bada and Liebl (2014) for all technical details. 
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where �̂�−𝑖, �̂�−𝑖,𝑙, and 𝑓−𝑖,𝑙 are estimates of β, λ and f,  respectively, -i  is a number 

of observations.  

 Then, the semiparametric solutions are the following: 

�̂� = (∑ 𝑋𝑇
′𝑁

𝑖=1 (𝐼 − 𝑍𝜅)𝑋𝑖)−1(∑ 𝑋𝑇
′𝑁

𝑖=1 (𝐼 − 𝑍𝜅)𝑌𝑖),    (13) 

𝜉𝑖 = (𝑍′𝑍 + 𝜅𝑅)−1𝑍′(𝑌𝑖 − 𝑋𝑖�̂�),       (14) 

𝑣𝑖 = 𝑍𝜅(𝑌𝑖 − 𝑋𝑖�̂�) ,         (15) 

where 𝑍𝜅 = 𝑍(𝑍′𝑍 + 𝜅𝑅)−1𝑍′ and it is a positive semi-definite symmetric matrix 
with  eigenvalues [0, 1]. 

Unobserved factors can be estimated as follows:  

𝑓𝑙(𝑡) = √𝑇�̂�𝑙𝑡, for all 𝑙 ∈ {1, … , 𝑑},      (16) 

where √𝑇 is the scaling factor, �̂�𝑙𝑡 are the first d eigenvectors that 
correspond to the largest eigenvalues of the covariance matrix: 

Σ̂ =
1

𝑛
∑ 𝑣𝑖𝑣𝑖

′𝑛
𝑖=1 .         (17) 

Individual loading parameters are calculated as 

�̂�𝒊𝒍 =
𝟏

𝑻
𝒇𝒍

′(𝒕)(𝒀𝒊 − 𝑿𝒊�̂�).        (18) 

And the variance is estimated in the following way: 

�̂�2 =
1

(𝑛−1)𝑇
∑ ‖𝑌𝑖 − 𝑋𝑖�̂� − ∑ �̂�𝑖𝑙𝑓𝑙(𝑡)𝑑

𝑙=1 ‖
2𝑇

𝑖=1 .     (19) 

3. Empirical results 

For the empirical estimation a panel data set that covers the 2000Q1-
2014Q4 period of time for 34 OECD countries is formed. The data contains the 
following input and output categories5: 

                                              

5 Source: OECD 
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 real GDP (in US dollars, fixed PPPs and seasonally adjusted); 

 export of goods and services (in US dollars, fixed PPPs and seasonally 
adjusted); 

 gross fixed capital formation, that can explain how much of the new value 
added to the economy is invested rather than consumed (in US dollars, 
fixed by PPPs and seasonally adjusted); 

 import of goods and services (in US dollars, fixed by PPPs and seasonally 
adjusted); and 

 the number of employed persons (thousands of persons). 

The final data are taken as changes in their values. Thus, the Cobb-Douglas 
stochastic distance frontier with multiple inputs/multiple outputs includes the 
following variables: Y=ln(real GDP), Y*=-ln(export of goods and services/real 
GDP), X=(-ln(gross fixed capital formation), -ln(number of employed persons), -
ln(import of goods and services)). This is in keeping with a classical application 
of the Cobb-Douglas stochastic distance frontier. 

3.1. Missing values imputation 

The dataset formed includes missing values that makes it unbalanced. The 
missing values are in the employment time-series, mainly at the beginning of the 
series (see Table 1 and Fig. A1 in Appendix): 

 

Table 1: The number of missing values in the employment variable 

Country Number of missed values 

Canada 1 

Chile 1 

Iceland 9 

Mexico 1 

Poland 1 

Slovenia 1 

 

Since taking heterogeneity into consideration requires a dataset to be 
balanced, for this purpose a multiple imputation approach is applied. 

Multiple imputation of missing data has become popular since its formal 
introduction by Rubin (1978). There are a variety of imputation methods applied 
nowadays, e.g., Schafer (1997), Van Buuren and Oudshoom (2000) and 
Raghunathan et al. (2001), etc. In this study, a bootstrapping-based algorithm 
(King et al., 2001; Honaker and King, 2010) is utilized. This algorithm allows for 
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trends in time series across observations within a cross-sectional unit, as well as 
priors. Its application generates results of a similar quality as the standard 
imputations or expectation-maximization approaches, but it is faster. The general 
description of the algorithm logic is provided in Appendix 66.  

Figure 1 below proves that there are no significant problems with finding 
the global maximum of the likelihood surface due to different starting values that 
can affect imputations. 

 

Figure 1: Converging of EM chains 

 
Source: Author’s calculation 

 

In Figure 1, the y-axis of this figure denotes a number of principal 
components and represents a movement in the high dimensional parameter 
space. The other axis represents the number of iterations of a chain. It is possible 
to observe that the likelihood is well behaved and all expectation-maximization 
chains converge to the same value of the global maximum, regardless of starting 
values. 

A comparison of the distribution of imputed values with the distribution of 
observed values is performed as proposed by Abayomi et al. (2008). It is obvious, 
that these distributions a priori cannot be identical, since the missing values might 
vary systematically. The comparison shows that the differences in distributions of 
employment data are not significant (Figure 2a). Although, the presence of 
differences does not inevitably indicate problems with the imputations since 
these missing values are missing in a random manner.  

Honaker et al. (2011) proposed an overimputation diagnostic that implicates 
treating each of the observed values in a sequential way as if they had actually 

                                              

6 The calculations were done by means of R package Amelia II. 
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been missing. A y = x line in Figure 2b is the line of perfect agreement. 
Imputations perfectly correspond to true values if they fall on this line in the 
similar way, as we mainly have in our case. 

 

Figure 2a: Comparison of the distributions of imputed and observed values 

 
Source: Author’s calculation 
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Figure 2b: Overimputation diagnostic results of Iceland employment variables 

 
Source: Author’s calculation 

 

3.2. Technical Efficiency Estimation 

A heterogeneous in time panel model with additive and interactive 
unobserved effects is specified as: 

𝑌𝑖𝑡 = 𝜃𝑡 + 𝑋𝑖𝑡
′ 𝛽 + 𝑣𝑖(𝑡) + 𝜖𝑖𝑡,        (20) 

where Y= ln(real GDP), X=(-ln(Export of goods and services/real GDP), -ln(Gross 

Fixed Capital Formation), -ln(Import of goods and services), -ln(Employment)), 𝜃𝑡 are time 

effects, and 𝑣𝑖(𝑡) are interactive unobserved effects, which are derived as 

𝑣𝑖(𝑡) = ∑ 𝜆𝑖𝑙𝑓𝑙(𝑡)𝑑
𝑙=1 ,         (21) 

where 𝑓𝑙(𝑡) are unobserved common factors for all countries, 𝜆𝑖𝑙 are 
heterogeneous impacts of common factors on a country i. 
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3.2.1. Dimensionality estimation 

The test of the sufficiency of classical additive effects (Equation 7) 
investigates the factor dimension, d in the first place. It returns the negative value 

of JB due to the negative definiteness of ∆. It means that there is insufficiency of 
classical additive effects and the factor dimension in the model is larger than 2. 

The test for the existence of common factors (Equation 8) returns the 
following results (Table 2): 

 

Table 2: Test results for the existence of common factors 

Test-Statistic p-value crit.-value sig.-level 

         38.51 0.00 2.33 0.01 

Source: Author’s calculation 

 

It means that the null hypothesis7 can be rejected at the significance level 
α=0.01. 

The results of the next 6 tests are summarized and presented in Figure 3 
below.  

 

Figure 3: Dimensionality for the OECD countries’ model 

 
Source: Author’s calculation 

 

Performed empirical and graphical analyses show, that the better results are 
derived by the most robust PC(l) criteria with various penalty terms. Thus, 
according to Figure 3, the PC1, PC2, PC3, IC1, and IC3 criteria tell us that d 

                                              

7 H0 : the factor dimension is equal to 0 

0

1

2

3

4

5

6

7

Optimal dimension Std. Err



Roman Matkovskyy, A comparison of pre- and post-crisis efficiency of OECD countries: evidence from a 
model with temporal heterogeneity in time and unobservable individual effects 

 

Available online at http://eaces.liuc.it 

149 

should be equal to 6. ABC.IC1 and ABC.IC2 estimate d at the level of 4 factors, 
IC2, ER and GR advocate 3 factors. BIC3 proposes 2 factors, estimation of 
KSS.C criterion derives 1 factor, and IPC1, IPC2, IPC3 and ED do not 
distinguish any factors. The standard errors have their lowest values with 6 
factors. The tests also indicate that 6 factors explain more than 65% of the 
variance. Therefore, it is possible to assume that the maximum number of the 
unobserved factors, d, is 6.  

3.2.2. Parameters estimation results 

The estimates of the slope coefficients are provided in Table 3. The 
estimate of the “import” variable is not statistically significant in the model. It 
allows for the assumption that the real GDP of OECD countries does not 
depend on these countries imports. The insignificance of (Export/real GDP) is 
not important since it is a second output variable. 

 

Table 3: Slope coefficients  

Variable Estimate / Std. Err. z.value Pr(>z) 

l.Export_GDP  -0.00684/0.00918 -0.746 0.45600 

l.GFCF -0.07770 /0.00642 -12.100 <2e-16 

l.Import    -0.00265 /0.00919 -0.289 0.77300 

l.Employment -0.04970 /0.01670 -3.270 0.00106 

Note: Residual standard error=0.000128; Unobserved factors=6; R2=0.377. 

Source: Author’s calculation 

 

Additive time effects impact OECD countries in a common way. In Figure 

4 the dynamics of the additive time parameter, 𝜃𝑡, is presented. 
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Figure 4: Additive time effects, 𝜽𝒕 

 
Source: author’s calculation 

 

We can observe that a rapid decrease starts in 2007Q2 which corresponds 

to the beginning of the global financial crisis. The lower values of 𝜃𝑡 are found in 

the 2008Q4-2009Q1 period, and then 𝜃𝑡 increases until 2010Q3. The next 
negative tendency of the additive time parameter behavior that relates to the 
beginning of the global economic crisis begins in 2010Q4. Despite the different 
GDP growth rates8 in OECD countries, the effect of the additive time parameter 

is similar in 2001-2002 and 2014. Thus, observing 𝜃𝑡 can help to identify crises 
common to a set of countries. 

The dynamics of normalized common unobserved factors, 𝑓𝑙(𝑡), shows the 
influence of common shocks on outputs. According to the performed tests, the 
model includes 6 common factors. The first two common factors explain 
together more than 95% of the total variance of the time-varying individual 

effects 𝑣𝑖(𝑡). The calculation of the variance shares of common factors 
represents slightly antagonistic results if compared to the dimensionality test 
results (Figure A2). It can be assumed, that theoretically the variance can be 
explained by more than 6 unobserved factors due to a high heterogeneity of 
OECD countries. 

To give some economic meaning, 𝑓𝑙(𝑡) values are rotated by applying the 
VARIMAX method. Since the common unobserved factors were normalized 
during their estimation, VARIMAX rotation is performed without the Kaiser 
normalization phase. The results are presented in Figure 4 below and in Figure 
A3 in the Appendix.  

                                              

8 During 2001, 2002, and 2014 the OECD growth rate was approximately 0.7, 1.7, and 0.6, 
respectively. The output growth varies across OECD countries, e.g.  in 2000 the output 
growth in the USA was higher than in the Euro Area or  Japan. 
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Figure 5: Dynamics of the common f1(t) and f2(t) unobserved factors, (d=6), VARIMAX rotated 

 
Source: author’s calculation 

 

It is obvious that the common unobserved factors have cyclical dynamics (Figure 5 and Figure A3). The average cycle length 
of OECD countries is equal to 6 years. The negative values of the two first factors during the 2003Q3-2009Q3 period correspond 
to the general economic decline observed in world markets (late-2000s recession). 

Individual factor loadings, 𝜆𝑖𝑙 , are presented in Figure 6. They explain the heterogeneous impact of unobserved common 

shocks, 𝑓𝑙(𝑡), on a country i.  
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Figure 6: The dynamics of the unobserved individual factors loadings, 𝝀𝒊𝒍 (d=6) 

 
Source: author’s calculation 

 

-0,006

-0,004

-0,002

0

0,002

0,004

0,006

lambda 1 lambda 2



Roman Matkovskyy, A comparison of pre- and post-crisis efficiency of OECD countries: evidence from a 
model with temporal heterogeneity in time and unobservable individual effects 

 

Available online at http://eaces.liuc.it 

153 

The unobserved individual factor loadings with values close to zero show 
the neutral response of a specific country’s output to the unobserved common 

shocks, 𝑓𝑙(𝑡). Positive values of these loadings can be interpreted as the 
amplifiers of the impacts of unobserved common shocks. Negative values 
demonstrate some resistance of a country to shocks. In our case (Figure 6), the 
most resistant to shocks in terms of productivity growth are the following 
economies: Austria, Belgium, Denmark, Finland, France, Germany, Italy, Japan, 
the Netherlands, Norway, Portugal, Spain (but the second factor is strongly 
positive), Switzerland and the United Kingdom. The influence of negative shocks 
was amplified by the value of 𝜆𝑖𝑙 in Australia, Chile, Czech Republic, Estonia, 
Greece (the second factor), Iceland, Ireland, Israel, Korea, Luxemburg, Mexico, 
New Zeeland, Poland, the Slovak Republic, Slovenia (second factor), Spain 
(second factor) and Turkey. The productivity growth in such countries as 
Canada, Sweden and the United States was not considerably affected. 

 The technical efficiency of the analyzed economies is calculated by 
means of Equation (6). The average technical efficiency during the 2000Q2-
2014Q4 period and the average technical efficiency across countries are 
presented in Figure 7 and Figure 8, respectively. 

 

Figure 7: Average technical efficiency of countries during the 2000Q2-2014Q4 
period 

 
Source: author’s calculation 

 

Figure 7 shows, that during the 2000Q2-2014Q4 period the lowest average 
level of technical efficiency was observed in Italy, Greece, Portugal, and 
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Denmark. Countries such as Korea, the Slovak Republic and Turkey are at the 
closest distance to the boundaries of their average possibilities.  

According to Figure 8, average technical efficiency was growing until 
around 2006Q4. Starting from 2008Q1 the level of technical efficiency constantly 
decreases. Thus, the approximate delay between the beginning of the crisis and 
the decline in the technical efficiency of OECD countries is approximately 4 
quarters. The current level of technical efficiency of OECD countries is at the 
level of 2001. 

 

Figure 8: Average technical efficiency across OECD countries 

 
Source: author’s calculation 

  

Comparison of the pre-crisis period (2000-2006) to the post-crisis period 
(2010-2014) in terms of average technical efficiency shows that countries mainly 
increase their efficiency after the crisis (Figure 9). 

The most noticeable growth is observed in Australia, Austria, Belgium, 
Canada, Chile, Denmark, France, Germany, Israel, Japan, Mexico, New Zeeland, 
Norway, Poland, Swede, Switzerland, Turkey and the United States. The 
exceptions are the following countries: the Czech Republic, Estonia, Finland, 
Greece (the greatest lag between pre- and post- crisis period of time), Hungary, 
Ireland, Luxemburg, the Slovak Republic, Slovenia, and Spain, which have their 
technical efficiency decreased. The minimum changes in efficiency are observed 
in Iceland, Italy, Korea, the Netherlands, Portugal, and the United Kingdom. 
Comparison of the countries also shows that if values of the country’s 
unobserved individual factor loadings, 𝜆𝑖𝑙, are either negative or close to zero, this 
country’s technical efficiency increases after the crisis. 

0,986

0,988

0,99

0,992

0,994

0,996

0,998

1

Q
1
-2

0
00

Q
2
-2

0
00

Q
3
-2

0
00

Q
4
-2

0
00

Q
1
-2

0
01

Q
2
-2

0
01

Q
3
-2

0
01

Q
4
-2

0
01

Q
1
-2

0
02

Q
2
-2

0
02

Q
3
-2

0
02

Q
4
-2

0
02

Q
1
-2

0
03

Q
2
-2

0
03

Q
3
-2

0
03

Q
4
-2

0
03

Q
1
-2

0
04

Q
2
-2

0
04

Q
3
-2

0
04

Q
4
-2

0
04

Q
1
-2

0
05

Q
2
-2

0
05

Q
3
-2

0
05

Q
4
-2

0
05

Q
1
-2

0
06

Q
2
-2

0
06

Q
3
-2

0
06

Q
4
-2

0
06

Q
1
-2

0
07

Q
2
-2

0
07

Q
3
-2

0
07

Q
4
-2

0
07

Q
1
-2

0
08

Q
2
-2

0
08

Q
3
-2

0
08

Q
4
-2

0
08

Q
1
-2

0
09

Q
2
-2

0
09

Q
3
-2

0
09

Q
4
-2

0
09

Q
1
-2

0
10

Q
2
-2

0
10

Q
3
-2

0
10

Q
4
-2

0
10

Q
1
-2

0
11

Q
2
-2

0
11

Q
3
-2

0
11

Q
4
-2

0
11

Q
1
-2

0
12

Q
2
-2

0
12

Q
3
-2

0
12

Q
4
-2

0
12

Q
1
-2

0
13

Q
2
-2

0
13

Q
3
-2

0
13

Q
4
-2

0
13

Q
1
-2

0
14

Q
2
-2

0
14

Q
3
-2

0
14

Q
4
-2

0
14



Roman Matkovskyy, A comparison of pre- and post-crisis efficiency of OECD countries: evidence from a model with temporal heterogeneity in time and unobservable individual effects 

 

Available online at http://eaces.liuc.it 

155 

Figure 9: Comparison of the technical efficiency of OECD countries before 2007 and after 2009 

 
 Source: author’s calculation 

There is also another difference between these two periods of time. Thus, according to Figure 10a and Figure 10b, during 
the 2000-2006 period OECD countries were more highly differentiated in terms of their technical efficiency. After the crisis, the 
variation across countries in their technical efficiency is less. 

0,975

0,98

0,985

0,99

0,995

1

Before crisis, average After crisis, average



EJCE, vol.13, n.2 (2016) 

 

 

 
Available online at http://eaces.liuc.it 

156 

Figure 10a: The average technical efficiency of countries before the crisis 
(2000-2006) 

 
Source: author’s calculation 
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Figure 10b: The average technical efficiency of countries after the crisis 
(2010-2014) 

 
Source: author’s calculation 
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unit. The statistical characteristics of the imputations prove the appropriateness 
of the chosen method. 

The parameters of the models are estimated in the semi-parametric way. 
The received results suggest that the approach proposed by Kneip et al. (2012) 
yields reasonable estimates regardless of the assumption on the temporal pattern 
of countries’ individual effects. Based on the dimensionality test results, a 6-
factor model was built and analyzed. Time-varying individual effects catch 
differences among the analyzed countries over time and significantly extend the 
classical model by explaining the heterogeneous impact of unobserved common 
shocks on the productivity growth of the countries. It is obvious that 
heterogeneity over time and across OECD countries matters. 

Model coefficient interpretations might be of interest to policy makers, 
because action taken to boost productivity performance requires a precise 
attribution of observed performance to its components and factors. Thus, 

observing 𝜃𝑡 can help to identify common crises for a set of countries. 

Normalized common unobserved factors, 𝑓𝑙(𝑡), define the evolution of the crisis 

influence on countries over time. Individual factor loadings, 𝜆𝑖𝑙 , explain the 

heterogeneous impact of unobserved common shocks, 𝑓𝑙(𝑡), on a country, and 
therefore can help to identify a country’s resistance to negative shocks. 

 The empirical results divulge the differences in technical efficiency across 
OECD countries in both pre- and post-crisis periods of time: 

 approximately 53% of OECD countries increase their efficiency after the 
crisis, around 30% of the countries decrease their efficiency, and nearly 
17% of  OECD countries have the minimum changes in their efficiency 
after the crisis; 

 the average length of common shocks cycles that influence outputs of 
OECD countries is equal to 6 years; 

 the approximate delay between the beginning of the crisis and the decline in 
the technical efficiency of OECD countries is 4 quarters; 

 the most resistant to shocks in terms of productivity growth are 
approximately 38% of OECD countries, namely: Austria, Belgium, 
Denmark, Finland, France, Germany, Italy, Japan, the Netherlands, 
Norway, Portugal, Switzerland and the United Kingdom; 

 the influence of negative shocks was amplified by the value of 𝜆𝑖𝑙 in 50 % of 
OECD countries, namely: Australia, Chile, the Czech Republic, Estonia, 
Greece (the second factor), Iceland, Ireland, Israel, Korea, Luxemburg, 
Mexico, New Zeeland, Poland, the Slovak Republic, Slovenia (second 
factor), Spain (second factor) and Turkey; 
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 productivity growth in the countries such as Canada, Sweden and the 
United States - that is approximately 9% of OECD countries - was not 
considerably affected; 

 the current average level of technical efficiency of OECD countries is at the 
level of 2001; 

 variation in technical efficiency across countries decreased after the crisis. 

These results can help to track how OECD countries develop over time in 
terms of their technical efficiency, as well as highlight some shortcomings in 
regulation of OECD countries co-operation process, which is in line with OECD 
Regulatory Policy 2015 (OECD, 2015). 
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Appendix 

 

Appendix 1:  KSS.C dimensionality criterion 

KSS.C dimensionality criterion is the sequential testing procedure which 
follows (see Kneip et al. 2012 for all technical details): 

𝐾𝑆𝑆. 𝐶 =
𝑛 ∑ �̂�𝑟

𝑇
𝑟=𝑑+1 −(𝑛−1)�̂�2𝑡𝑟(𝛧𝑘�̂�𝑑𝛧𝑘)

�̂�2√2𝑁∙𝑡𝑟((𝛧𝑘�̂�𝑑𝛧𝑘)2)
  𝑁(0,1)~

𝑑     (A.1) 

where k is a smoothing parameter, estimated as in Equation (12); 𝑍𝜅 is a positive 

semi-definite symmetric matrix with eigenvalues [0, 1];  �̂�𝑟 are the resulting 

eigenvalues of the empirical covariance matrix Σ̂ =
1

𝑛
∑ 𝑣𝑖𝑣𝑖

′𝑛
𝑖=1 ; �̂�𝑑 is the 

projection matrix projecting into the (n–d) dimensional linear space orthogonal to 

span {𝛧𝑘𝑔1, … , 𝛧𝑘𝑔𝑑 } and is derived as 

 �̂�𝑑 = 𝐼 −
1

𝑇
∑ 𝑓𝑙𝑓𝑙

′𝑑
𝑙=1  with 𝑓𝑙 = (𝑓𝑙(1), … , 𝑓𝑙(𝑇))′    (A.2) 

and �̂�2 is calculated as 

�̂�2 =
1

(𝑛−1)𝑡𝑟((𝐼−𝛧𝑘)2)
∑ ‖(𝐼 − 𝛧𝑘)(𝑌𝑖 − 𝑋𝑖�̂�)‖

2𝑛
𝑖=1      (A.3) 

This estimator may have a tendency to overestimate �̂�2, but according to 
Kneip et al. (2012) and Bada and Liebl (2014) it is suitable for dimension 
selection. 

 

Appendix 2: IC(l) and PC criteria 

In IC(l) (IC1, IC2, IC3) and PC (PC1, PC2, PC3, BIC3) criteria d is derived 
from minimizing the following (see Bai and Ng (2002) and Bada and Liebl (2014) 
for technical details): 

𝐼𝐶(𝑙) = log (
1

𝑛𝑇
∑ ∑ (𝑦𝑖𝑡 + �̂�𝑖𝑡(𝑙))2𝑇

𝑡=1
𝑛
𝑖=1 ) + 𝑙𝑔𝑛𝑇    (A.4) 

where 𝑙  is a given factor dimension 𝑙 ∈ {1, 2, 3, … } , 𝑔𝑛𝑇 is a penalty term  that 
is estimated in the one of the following ways: 
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𝑔𝑛𝑇
(𝐼𝐶1)

=
(𝑛+𝑇)

𝑛𝑇
log (

𝑛𝑇

𝑛+𝑇
)        (A.5) 

𝑔𝑛𝑇
(𝐼𝐶2)

=
(𝑛+𝑇)

𝑛𝑇
log (min{𝑛, 𝑇})       (A.6) 

 𝑔𝑛𝑇
(𝐼𝐶3)

=
log(min{𝑛,𝑇})

min{𝑛,𝑇}
       (A.7) 

𝑃𝐶(𝑙) =
1

𝑛𝑇
∑ ∑ (𝑦𝑖𝑡 + �̂�𝑖𝑡(𝑙))2𝑇

𝑡=1
𝑛
𝑖=1 + 𝑙𝑔𝑛𝑇     (A.8) 

where �̂�𝑖𝑡(𝑙) are the fitted values for a given factor dimension 𝑙 ∈ {1, 2, 3, … }, 

𝑔𝑛𝑇 can be specified by one of the following penalty terms: 

𝑔𝑛𝑇
(𝑃𝐶1)

= �̂�2 (𝑛+𝑇)

𝑛𝑇
log (

𝑛𝑇

𝑛+𝑇
),       (A.9) 

𝑔𝑛𝑇
(𝑃𝐶2)

= �̂�2 (𝑛+𝑇)

𝑛𝑇
log (min{𝑛, 𝑇}),      (A.10) 

𝑔𝑛𝑇
(𝑃𝐶3)

= �̂�2 log (min{𝑛,𝑇})

min{𝑛,𝑇}
,        (A.11) 

𝑔𝑛𝑇
(𝐵𝐼𝐶3)

= �̂�2 (𝑛+𝑇−𝑙)

𝑛𝑇
log (𝑛𝑇)       (A.12) 

where �̂�2 is the sample variance of the residuals 

�̂�2 =
1

𝑛𝑇
∑ ∑ (𝑦𝑖𝑡 − �̂�𝑖𝑡(𝑑𝑚𝑎𝑥))2𝑇

𝑡=1
𝑛
𝑖=1       (A.13) 

 

Appendix 3: Eigenvalue Ratio and Growth Ratio  

See Ahn and Horenstein (2013) for the technical details. 

Eigenvalue Ratio (ER):  

𝐸𝑅 = arg max𝑙≤𝑑𝑚𝑎𝑥

�̂�𝑙

�̂�𝑙+1
        (A.14) 
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where �̂�𝑙 and �̂�𝑙+1 are the l-th and (l+1)-th largest eigenvalues of the sample 
covariance matrix. The threshold values are estimated from the empirical 
distribution of the eigenvalues and the maximum value factors.  

Another way to derive the number of factors is to maximize the ratio of the 
growth rates (GR):  

𝐺𝑅 =
ln(

∑ �̂�𝑟
𝑇
𝑟=𝑙

∑ �̂�𝑟
𝑇
𝑟=𝑙+1

⁄ )

ln(
∑ �̂�𝑟

𝑇
𝑟=𝑙+1

∑ �̂�𝑟
𝑇
𝑟=𝑙+2

⁄ )

       (A.15) 

In a similar way as in (A.14) a GR function (A.15) is nearly symmetric 
around the true number of factors. 

 

Appendix 4:  IPC1, IPC2 and IPC3 panel criteria 

IPC1, IPC2 and IPC3 panel criteria suggested by Bai (2004): 

𝐼𝑃𝐶(𝑙) =
1

𝑛𝑇
∑ ∑ (𝑦𝑖𝑡 + �̂�𝑖𝑡(𝑙))2𝑇

𝑡=1
𝑛
𝑖=1 + 𝑙𝑔𝑛𝑇     (A.16) 

where  

𝑔𝑛𝑇
(𝐼𝑃𝐶1)

= �̂�2 log(log(𝑇))

𝑇

(𝑛+𝑇)

𝑛𝑇
log (

𝑛𝑇

𝑛+𝑇
),      (A.17) 

𝑔𝑛𝑇
(𝐼𝑃𝐶2)

= �̂�2 log(log(𝑇))

𝑇

(𝑛+𝑇)

𝑛𝑇
log (min{𝑛, 𝑇}),     (A.18) 

𝑔𝑛𝑇
(𝐼𝑃𝐶3)

= �̂�2 log(log(𝑇))

𝑇

(𝑛+𝑇−𝑙)

𝑛𝑇
log (𝑛𝑇)     (A.19) 

 

Appendix 5: Eigenvalue Differences (threshold approach) 

Eigenvalue Differences by Onatski (2010) are based on the fact that for the 
data with l latent common factors, the largest l eigenvalues of the second-
moment matrix of the data grow without limit with n. Thus, a threshold value is 
derived from the empirical distribution of the eigenvalues to differentiate the 
diverging ones from the bounded ones: 
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�̂� = max{𝑙 ≤ 𝑑𝑚𝑎𝑥 ∶  �̂�𝑙 − �̂�𝑙−1 ≥ 𝛿}      (A.20) 

where �̂�𝑙   and �̂�𝑙−1 are eigenvalues, 𝛿 is a positive threshold estimated iteratively 
from the raw data. 

 

Appendix 6: Missingness imputations 

6A. Missing values  

 

Figure A1: Missingness map of the variable “Employment” 

 

 

6B. The general algorithm of missing values imputations  

It is assumed that the panel dataset of OECD countries, D, (n × t), has a 

multivariate normal distribution with a mean vector 𝜇 and a covariance matrix Σ, 

𝐷~𝒩𝑘(𝜇, Σ), and includes both observations (Dobs) and missing values (Dmis). 
Another assumption is that missingness depends on the observed data. It implies 
that missing values are missing at random (MAR) and do not depend on the 
complete-data parameters, that are in the line of the most of multiple imputation 
methods. 

Thus, the likelihood of observed data is 

𝑝(𝐷𝑜𝑏𝑠, 𝑀|𝜃) = 𝑝(𝑀|𝐷𝑜𝑏𝑠)𝑝(𝐷𝑜𝑏𝑠|𝜃),      (A.21) 

where 𝜃 = (𝜇, Σ) are the complete-data parameters, M is the missingness matrix. 
Since the main interest is in inference on the complete-data parameters, the 
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likelihood can be rewritten as (see King et al., 2001; Honaker and King, 2010; and 
Honaker et al., 2011 for technical details): 

𝐿(𝜃|𝐷𝑜𝑏𝑠) ∝ 𝑝(𝐷𝑜𝑏𝑠|𝜃) = ∫ 𝑝(𝐷|𝜃)𝑑𝐷𝑚𝑖𝑠.    (A.22) 

Then, imputations are derived by drawing missing values from their 
distributions, conditional on Dobs and the draws of θ.  

Alternatively to King et al. (2000), after simulations of imputation sets, e.g., 
m=5…1000, the model results are combined by averaging of estimated inputs, q, 
over all separate estimates, m (Honaker et al., 2011): 

�̅� =
1

𝑚
∑ 𝑞𝑗

𝑚
𝑗=1           (A.22) 

where �̅� is the average of estimated inputs 𝑞𝑗. 

 

Appendix 7. Unobserved factors 

Figure A2: Proportion of variance explained by the factors, % 
(pre-estimation from the tests) 

 
Source: Author’s calculation 

Figure A3: Dynamics of common f3(t)-f6(t) unobserved factors, (d=6), VARIMAX 
rotated 
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Source: Author’s calculation 
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